A novel dnaJ family gene, sflA, encodes an inhibitor of flagellation in marine Vibrio species.
نویسندگان
چکیده
The marine bacterium Vibrio alginolyticus has a single polar flagellum. Formation of that flagellum is regulated positively and negatively by FlhF and by FlhG, respectively. The ΔflhF mutant makes no flagellum, whereas the ΔflhFG double-deletion mutant usually lacks a flagellum. However, the ΔflhFG mutant occasionally reverts to become motile by forming peritrichous flagella. We have isolated a suppressor pseudorevertant from the ΔflhFG strain (ΔflhFG-sup). The suppressor strain forms peritrichous flagella in the majority of cells. We identified candidate suppressor mutations by comparing the genome sequence of the parental strain, VIO5, with the genome sequences of the suppressor strains. Two mutations were mapped to a gene, named sflA (suppressor of ΔflhFG), at the VEA003730 locus of the Vibrio sp. strain EX25 genome. This gene is specific for Vibrio species and is predicted to encode a transmembrane protein with a DnaJ domain. When the wild-type gene was introduced into the suppressor strain, motility was impaired. Introducing a mutant version of the sflA gene into the ΔflhFG strain conferred the suppressor phenotype. Thus, we conclude that loss of the sflA gene is responsible for the suppressor phenotype and that the wild-type SflA protein plays a role in preventing polar-type flagella from forming on the lateral cell wall.
منابع مشابه
DjlA, a membrane-anchored DnaJ-like protein, is required for cytotoxicity of clam pathogen Vibrio tapetis to hemocytes.
DjlA is an inner membrane cochaperone belonging to the DnaJ family, which has been shown to be involved in Legionella sp. pathogenesis. In this study, we explored the role of this protein in the physiology and virulence of Vibrio tapetis, the etiological agent of brown ring disease (BRD) in Manila clam (Ruditapes philippinarum). Analysis of the djlA locus in V. tapetis revealed a putative organ...
متن کاملIdentification of a Novel Splice Site Mutation in RUNX2 Gene in a Family with Rare Autosomal Dominant Cleidocranial Dysplasia
Introduction: Pathogenic variants of RUNX2, a gene that encodes an osteoblast-specific transcription factor, have been shown as the cause of CCD, which is a rare hereditary skeletal and dental disorder with dominant mode of inheritance and a broad range of clinical variability. Due to the relative lack of clinical complications resulting in CCD, the medical diagnosis of this disorder is challen...
متن کاملIdentification of a Novel CLCNKB Mutation in an Iranian Family with Bartter Syndrome Type 3.
Bartter syndrome (BS) is a group of uncommon genetic disorders of reabsorption of salt in the cortical thick ascending limb (TAL) of the Henle's loop, typically distinguished by metabolic alkalosis, salt loss, hypokalemia, hyperreninemic hyperaldosteronism and normal blood pressure. Bartter syndrome type 3, recognized as a classic BS (CBS), occurs because of mutations in CLCNKB gene. We enroll...
متن کاملQStatin, a Selective Inhibitor of Quorum Sensing in Vibrio Species
Pathogenic Vibrio species cause diseases in diverse marine animals reared in aquaculture. Since their pathogenesis, persistence, and survival in marine environments are regulated by quorum sensing (QS), QS interference has attracted attention as a means to control these bacteria in aquatic settings. A few QS inhibitors of Vibrio species have been reported, but detailed molecular mechanisms are ...
متن کاملFamily screening for a novel ATP7B gene mutation, c.2335T>G, in the South of Iran
Background Wilson disease (WD) is a rare autosomal recessive disorder, which leads to copper metabolism, due to mutations in ATP7B gene. The gene responsible for WD consists of 21 exons that span a genomic region of about 80 kb and encodes a copper transporting P-type ATPase (ATP7B), a protein consisting of 1465 amino acids. Identifying mutation in ATP7B gene is important to find carrier i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 195 4 شماره
صفحات -
تاریخ انتشار 2013